Hosted by IDTechEx
The source for global news on
printed, organic and flexible electronics,
interpreted by experts
HomeApplicationsTechnologyEventsReportsAdvertiseTVCareersAbout UsSign-up or LoginIDTechExTwitterFacebookLinkedInGoogle+YoutubeRSSForward To Friend
Posted on April 17, 2013

High performance graphene electrochemical energy systems

E-Textiles 2017-2027: Technologies, Markets, Playe
Grafoid Inc. to sign a two-year R&D agreement with the University of Waterloo to investigate and develop a graphene-based composite for electrochemical energy storage for the automotive and/or portable electronics sectors.
Gary Economo, President and CEO of Focus Graphite Inc. and Grafoid Inc., said the objective of the agreement is to research and develop patentable applications using Grafoid's unique investment which derives graphene from raw, graphite ore to target specialty high value graphene derivatives ranging from sulfur graphene to nanoporous graphene foam.
Some of the new graphene materials will contribute positively as a powerful next generation composite for fuel cell/electrochemical supercapacitor applications, he said.
Those applications include but are not limited to: electrodes, nanocatalyst support, electrolyte membranes and bipolar plates, transparent electrodes and other potential applications which create high-efficiency solutions in electrochemical energy systems and portable electronics.
It follows R&D partnering projects announced with Rutgers University's AMIPP, CVD Equipment Corporation, with Hydro-Quebec's research institute, IREQ, and with British Columbia-based CapTherm Systems, an advanced thermal management technologies developer and producer.
Printed and Flexible Sensors 2017-2027: Technologi
Mr. Economo said Grafoid's investment in highly conductive graphene, combined with the University's advanced catalyst technologies could advance the science "by opening the door to a realistic, cost-competitive option to other energy solutions."
"Given our growth agenda for 2013, we expect to be in a position to announce a number of additional application development projects throughout the course of 2013," Mr. Economo added.
Dr. Aiping Yu, Assistant Professor, Department of Chemical Engineering at the University of Waterloo will be the lead investigator of the project. Dr. Gordon Chiu, Research Scientist, Department of Chemical Engineering at the University of Waterloo will be working on the project.
Dr. Chiu said that research and discovery on graphene sulfur and nanoporous graphene is well documented and is a cornerstone for a wide range of applications
"The technology for tailoring graphene for energy storage systems must be developed. This will lead to unique intellectual property assets.
"Our group's approach for targeting graphene derivatives that powerfully impact next generation energy storage systems adds significant value to commercial applications while providing invaluable knowledge and insight about the engineering of graphene and certain graphene metamaterials," Dr. Chiu said.
Printed, Organic & Flexible Electronics Forecasts,
Dr. Yu said that graphene without proper porosity and polarity remain "a constant roadblock for entry into next generation energy storage applications.