Hosted by IDTechEx
Printed Electronics World
The source for global news on
printed, organic and flexible electronics,
interpreted by experts
HomeApplicationsTechnologyEventsReportsTVAdvertiseCareersAbout UsSign-up or LoginIDTechExTwitterFacebookLinkedInGoogle+YoutubeRSSForward To Friend
Printed Electronics World
Posted on August 03, 2018

Laser-scribed disordered graphene improves sodium-ion batteries

Structural Electronics 2018-2028
Sodium-ion batteries have potential to replace the currently used lithium-ion batteries by using the cheaper (less than a thirtieth of the cost of lithium) and more abundant sodium resource. This has particular potential in Saudi Arabia, where sodium is readily available and easily extracted as a byproduct of water desalination, a significant source of potable water in the country. For more information see the IDTechEx report on functional materials for future electronics.
Yet normal graphite, the dominant anode material in lithium-ion batteries, struggles to store or intercalate sodium ions because sodium ions are larger than lithium ions. Hard carbon is a type of disordered graphite that can store more sodium ions, hence increasing battery capacity. The problem is that making hard carbon requires temperatures of almost 1000°C.
The KAUST team led by Husam Alshareef has developed a process using a simple bench-top laser to make three-dimensional hard carbon directly on copper collectors without excessive temperatures or additional coating steps.
The team formed a polymer (urea-containing polyimide) sheet on copper and then exposed this sheet to strong laser light. By introducing nitrogen gas during the process, the team could replace some of the carbon atoms with nitrogen atoms, reaching an extremely high nitrogen level (13 atomic %), which is unattainable by other techniques. Thus, the three-dimensional graphene was more conductive, had expanded atomic spacing, and was directly bonded to the copper current collectors, eliminating the need for additional processing steps.
Webinars Generic Banner
"We wanted to find a way to make three dimensional hard carbons without having to excessively heat our samples. This way we could form the hard carbon directly on copper collectors," said Fan Zhang, a Ph.D. student in Alshareef's group.
The KAUST researchers fabricated sodium-ion batteries using their laser-formed anode material. Their device exhibited a coulombic efficiency that exceeds most reported carbonaceous anodes, such as hard and soft carbon, and a sodium-ion capacity better than most previous carbon anodes in sodium-ion batteries.
"Their work opens a new direction in battery research, which can be extended to other energy-storage technologies," said Alshareef.
Source and top image: KAUST
Learn more at the next leading events on the topic:
or Printed Electronics USA 2018 External Link on 14 - 15 Nov 2018 at Santa Clara Convention Center, CA, USA
hosted by IDTechEx.